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1. INTRODUCTION  

It is well known that for Doppler radars transmitting 
uniformly spaced pulses there is a coupling between the 
maximum unambiguous range and velocity. That is, one 
can only be increased at the expense of a proportional 
decrease of the other. Because this fundamental 
limitation hinders observation of severe weather 
phenomena, the Radar Operations Center of the US 
National Weather Service has undertaken the 
implementation of evolutionary signal processing 
techniques to mitigate the effects of velocity and range 
ambiguities on the NEXRAD network. The first 
technique that was targeted for operational 
implementation is referred to as Sachidananda-Zrnić 
(SZ)-2 and has been in use since 2007.  

The SZ-2 algorithm is based on systematic phase 
coding of the transmitted pulses with the SZ(8/64) code 
(Torres 2005). Although the SZ(8/64) phase code 
results in a very effective recovery of weak overlaid 
signals, it leads to optimum performance only if the 
overlaid signal trip numbers differ by one. However, in 
the current operational implementation of the SZ-2 
algorithm, overlaid signals can exhibit trip differences of 
up to three.  

This paper introduces a family of systematic phase 
codes of the form SZ(n/64). A closer look into the 
performance of these generalized codes reveals a 
number of omissions in the early research work. 
Further, no single code is optimum for all overlay cases, 
and, surprisingly, the best overall phase code in the SZ 
family is not the SZ(8/64).  

 
2. THE PHASE CODING TECHNIQUE 

In the phase coding technique, the transmitted 
pulses are phase shifted using a systematic code 
sequence given by ψ(m), where m = 0, 1, …, M−1. If 
received echo samples are multiplied by 
exp[−jψ(m−k+1)], intrinsic phases of the signal from trip 
k are restored. Consequently, the k-trip signal is made 
coherent and out-of-trip overlaid signals are phase-
modulated by the code ψ(m−k’+1) − ψ(m−k+1), where k’ 
is the trip number of the overlaid signal. In general, any 
one of the overlaid trip signals can be cohered leaving 
the rest modulated by different codes. This is the 
fundamental principle behind these techniques. 
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2.1. SZ Phase Codes 

Sachidananda and Zrnić (1999) proposed the SZ 
phase code as a better alternative to random codes 
(e.g., Laird 1981). SZ phase coding is similar to random 
phase coding except that the transmitted pulses are 
phase-modulated with a systematic code consisting of 
M phases that repeat periodically. These codes exhibit 
properties that make them attractive for the separation 
of overlaid signals in the spectral domain. That is, if the 
received signal is cohered for a given trip, the spectra of 
all out-of-trip echoes are split into evenly spaced 
replicas and have zero lag-one autocorrelation. Hence, 
out-of-trip echoes do not bias the mean Doppler velocity 
estimate of the coherent signal. Once the velocity is 
recovered for the strong-trip, the coherent signal is 
notched out such that the two least contaminated 
“replicas” of the out-of-trip (i.e., the weak trip) echo 
remain. These two replicas are sufficient to reconstruct 
(or “recohere”) the weak-trip echo and recover its mean 
Doppler velocity. From the family of SZ(n/M) codes, the 
SZ(8/64) code was selected for NEXRAD as it gives the 
best performance in terms of recovery of overlaid 
signals that are separated by one trip (Sachidananda et 
al. 1998). 

 
2.2. The SZ-2 Algorithm 

Recovery of strong and weak trip overlaid signals 
can proceed in a stand-alone manner (referred to as the 
SZ-1 algorithm) or with the aid of an extra scan at the 
same elevation angle using a long pulse repetition time 
(PRT) (referred to as the SZ-2 algorithm). Although the 
latter results in longer acquisition times due to the extra 
scan, long-PRT data provides non-overlaid power 
information that is essential in the determination of the 
location and strength of overlaid trips for the short-PRT 
scan. Having the long-PRT information available makes 
the SZ-2 algorithm computationally simpler and more 
effective than its stand-alone counterpart. Whereas the 
long-PRT data provides the reflectivity free of range 
ambiguities, the short-PRT data is used to compute 
Doppler velocities associated with the two strongest 
overlaid signals.  

The SZ-2 algorithm, which has been implemented 
on the US network of weather surveillance radars since 
the Spring of 2007 (Saffle et al. 2007), incorporates a 
set of censoring rules to maintain data quality under 
situations that preclude the recovery of one or more 
overlaid echoes (Saxion et al. 2007, Ellis et al. 2005). 
Meteorological data displays characterize this failure by 
encoding those range locations where overlaid powers 



are present with a purple color, normally referred to as 
the “purple haze”. 

 
3. GENERALIZED PHASE CODES  

As mentioned before, the SZ-2 algorithm is based 
on the SZ(8/64) phase code, which was deemed 
optimum in the early stages of this project. However, the 
methodology used to make this determination did not 
consider overlay situations with trip differences of more 
than one. With the current implementation of the SZ-2 
algorithm, overlaid signals can exhibit trip differences of 
one, two, or three. Hence, it is natural to question 
whether the assessment done using only one overlay 
case still holds when we allow other overlay cases to 
occur. The main motivation for this work is the need to 
determine which phase codes might lead to better 
performance for overlay cases not considered before. In 
addition, we would like to explore the ability of other 
phase codes to extend the recovery of weak overlaid 
echoes to more trips, since the operational SZ-2 
algorithm only provides recovery of weak overlaid 
signals up to four trips. Although this is not a limitation 
within the NEXRAD network, other radar systems, 
especially those operating at shorter wavelengths, might 
benefit from an approach that extends the recovery of 
overlaid echoes to more trips.  

Herein, we look at switching codes in the SZ(n/64) 
family, where n is a positive integer. These are of the 
form 
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These codes are attractive because they exploit the 
WSR-88D phase shifter resolution to the maximum. 
That is, because the WSR-88D phase shifter is 
controlled with 7 bits, its phase resolution is π/64. 
Hence, the phase shifter can realize any phase that is 
an integer multiple of π/64, and this is the exact same 
form of the code given in (1). 

As with the SZ(8/64) code, the modulation codes 
for the family of SZ(n/64) codes are different for different 
overlay cases. Without loss of generality, assume that k 
= 1 (the first trip is coherent) and t = k’ – k is the trip 
difference between the modulated and coherent overlaid 
signals. Hence, the modulation code for an overlay trip 
difference t is given by 
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which for t = 1 (i.e., k’ = 2, which was the only case 
analyzed in the previous work) reduces to 
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3.1. Periodicity and performance of SZ(n/64) codes 

In general, the performance of systematic phase 
codes is measured by the ability of recovering the 
velocity of the weaker overlaid signal after removing 
most of the stronger signal. In Sachidananda et al. 
(1998), it was established that recovery of weak-trip 

velocity is possible from at least two replicas of the 
modulated weak-trip signal. Thus, a contradiction arises. 
On one hand, a modulation code producing more 
replicas (i.e., one with shorter periodicity) allows for a 
wider processing notch filter (PNF) and therefore a more 
efficient suppression of the strong-trip signal. On the 
other hand, a modulation code producing fewer replicas 
(i.e., one with longer periodicity) would result in more 
accurate weak-trip velocity estimates since less overlap 
of the weak-trip replicas occurs. It would seem that the 
periodicity (or the number of replicas) of the modulation 
code determines its performance in terms of weak-trip 
velocity recovery. However, it can be shown with a 
simple counterexample that the performance of these 
codes is not dictated solely by their periodicity. 

Let’s first consider the codes SZ(8/64) and 
SZ(56/64). The spectra of the corresponding modulation 
codes are shown in Fig. 1, where it is evident that both 
would lead to the same number of replicas. The 
performance of these codes in terms of weak-trip 
velocity recovery is shown in Fig. 1 as the standard 
deviation of velocity estimates on the power-
ratio/strong-trip spectrum width plane for a weak-trip 
spectrum width of 4 m/s and high signal-to-noise ratios. 
Evidently, these two codes have the same periodicity 
and the same performance. 

Consider now the codes SZ(8/64) and SZ(24/64). 
Again, the modulation code spectra and performance 
charts are shown below in Fig. 2, where it is now 
obvious that same periodicity does not lead to same 
performance. 

 

 
 

 
 

Fig. 1. (top) Spectra of the SZ(8/64) and SZ(56/64) 
modulation codes. (bottom) Statistical performance of 
weak-trip recovery corresponding to the SZ(8/64) and 

SZ(56/64) codes. The plots show the standard deviation 
of weak-trip velocity estimates as a function of the 
strong-to-weak trip power ratio and the strong-trip 

spectrum width. Strong and weak trips differ by one. 
 



 
 

 
Fig. 2. Same as Fig. 1 for the SZ(8/64) and SZ(24/64) 

modulation codes. 
 
Although the periodicity of the modulation code 

plays an important role in the performance of these 
codes, it is not enough to predict it. The reader might be 
wondering what is different between the two examples 
presented above. It is important to remember that weak-
trip velocities are recovered after applying the PNF and 
re-cohering the weak trip signal. So it would make 
sense to look at the spectra of the modulation codes 
after the same process. Fig. 3 shows the spectra of the 
modulation codes after the SZ-2 process for the codes 
in the examples above. Note that the codes with the 
same performance have the same code spectrum after 
notching and re-cohering. This is not the case for the 
SZ(24/64) code, which, as shown above, does not 
exhibit the same performance. 

 

 
 
Fig. 3. Spectra of the SZ(8/64), SZ(56/64), and 

SZ(24/64) modulation codes (red) and same after 
notching and re-cohering (blue). 

 

Therefore, not all codes with the same period (i.e., 
leading to the same number of modulated replicas) 
exhibit the same performance in terms of weak-trip 
velocity recovery. The performance of a given code 
depends on the structure of the sidebands after 
notching and re-cohering. But it is not clear at this time if 
there is a way to predict the performance of a given 
code based on its sideband structure. 

 

 
 

 
Fig. 4. Same as Fig. 1 for the SZ(8/64) and SZ(3/64) 

modulation codes. 
 
The previous examples showed codes with the 

same periodicity and different performance. Are there 
codes with the same performance but different 
periodicity? Consider now the SZ(8/64) and SZ(3/64) 
codes. These codes have a periodicity of 8 and 64, 
respectively. Although the periodicity of these codes is 
very different, their performance in terms of weak-trip 
velocity recovery is very similar! (see Fig. 4) This 
example reinforces the idea that the performance of 
systematic phase codes is not uniquely related to the 
number of spectral “replicas” (or periodicity) of the code. 
In other words, as the modulation code exhibits more 
“replicas”, the performance in terms of weak-trip velocity 
recovery does not necessarily get worse as previously 
suspected. Another consideration is that the PNF width 
must be tailored to the specific code and cannot be 
designed with the idea of retaining spectral replicas 
since this concept of “replicas” stops working for longer 
code periodicities (i.e., when the number of “replicas” 
increases with respect to the normalized spectrum width 
of the modulated signal). 

3.2. Performance of SZ(n/64) codes 

Next, simulations are used to evaluate the 
performance of this family of codes in a systematic way. 
Once again, performance is gauged in terms of weak-
trip velocity recovery, which depends on the switching 



code and the PNF width. The performance for any given 
code-PNF width combination is quantified in terms of 
the size of the “recovery region”. That is, on the power 
ratio vs. strong-trip spectrum width plane, we count the 
number of cases for which the standard deviation of 
weak-trip velocity estimates is less than 2 m/s for a true 
weak-trip spectrum width of 4 m/s (see Fig. 5). Note that 
the relaxed 2 m/s error benchmark reflects the recently 
established requirements for weak-trip velocity 
estimates obtained with the SZ-2 algorithm. 

 

 
Fig. 5. Examples of good (left panel) and bad (right 

panel) phase code-PNF width combinations in terms of 
weak-trip recovery. 

 
The simulation tested all codes in the SZ(n/64) 

family with two overlaid echoes and trip differences 
ranging from one to four. For each case, the PNF width 
was varied from 25% to 75% of the Nyquist co-interval. 
Signal parameters were varied as follows: the strong-to-
weak signal overlaid ratio from 0 to 70 dB in steps of 2 
dB; the strong-trip spectrum width from 0.5 to 8 m/s in 
steps of 0.5 m/s, and the overlaid signal velocities were 
chosen randomly in the Nyquist co-interval for each 
realization. The number of samples was M = 64, the 
weak-trip spectrum width was fixed at 4 m/s, the radar 
frequency was f = 2.8 GHz, the PRT was T = 780 μs, 
and the signal-to-noise ratio was high (more than 20 
dB).  

 

 
Fig. 6. Performance of SZ(n/64) codes for different PNF 
widths (NW) and overlaid cases with trip differences of 1 

(top left), 2 (top right), 3 (bottom left), and 4 (bottom 
right). “Warmer” colors represent better performance. 

 
The performance for every phase code-PNF width 

combination is plotted in Fig. 6 for overlaid signals with 

1, 2, 3, and 4 trip differences. Larger numbers (“warmer” 
colors) represent better performance (i.e., a larger 
weak-trip velocity recovery region). Many interesting 
properties can be inferred from these plots. For 
example, the vertical symmetry about n = 32 implies that 
codes of the form SZ(n/64) and SZ[(64−n)/64] are 
equivalent in terms of performance. Also, it is easy to 
spot codes that are not suitable for weak-trip velocity 
recovery, such as the SZ(32/64), which has a null 
recovery region for all PNF widths and overlay cases.  

The performance of the SZ-2 algorithm can be 
obtained from Fig. 6 by looking at the rows with n = 8. 
For an overlaid trip difference of one, two, and three, the 
SZ-2 PNF width is set at 48, 32, and 32, respectively. 
As expected, for an overlaid trip difference of four, no 
PNF width leads to recovery of the weak-trip velocity. 
Note that, as introduced earlier, SZ(8/64) is not the 
optimum phase code for all overlay situations. The 
question arises then as to which codes are the best for 
each overlay case. Table 1 lists the best code-PNF 
width combinations for each overlay case and compares 
their performance to the current SZ-2 algorithm. For 
overlaid signals with one trip difference, the best code is 
SZ(56/64), which is statistically equivalent to the familiar 
SZ(8/64) (symmetry property). For other overlay cases, 
the optimum code-PNF width combinations can extend 
the size of the recovery region by more than 50%! 
However, there is no single switching code that is 
optimum for all overlaid cases. 

 
 SZ(n/64) SZ(8/64)  
t n NW SRR NW SRR Improv.
1 56 48 388 48 382 2 
2 28 47 384 32 298 29 
3 3 47 384 32 246 56 
4 62 47 386 N/A 0 ∞ 

 
Table 1. Comparison of best SZ(n/64) codes-PNF width 
combinations and SZ-2 for different overlay cases. The 
table lists the PNF width (NW), the corresponding size 

of the weak-trip recovery region (SRR) and the 
improvement with respect to the SZ-2 algorithm. 

 
 SZ(4/64) SZ(8/64)  
t NW SRR NW SRR Improv.
1 41 343 48 382 -10 
2 47 382 32 298 28 
3 43 363 32 246 48 
4 35 310 N/A 0 ∞ 

 
Table 2. Same as Table 1 but comparing single-code 

best combinations and SZ-2 for different overlay cases. 
 
Although the performances of the best 

combinations are appealing, it is not practical to 
consider different phase codes for different overlay 
cases. Hence, we are interested in finding the best set 
of combinations based on a single phase code. These 
are listed in Table 2, where the phase code with best 
overall performance is SZ(4/64). For a trip difference of 
1, the SZ(4/64) code is about 10% worse than the 



operation SZ(8/64). This is expected since the SZ(8/64) 
was chosen for this situation. However, for all other 
situations, SZ(4/64) results in significant improvements 
over the SZ(8/64). It is important to mention that the 
determination of single-code best combinations was 
done considering overlay cases with trip differences of 
1, 2, and 3 only. A trip difference of 4 is not possible 
with the WSR-88D PRTs. Still, the SZ(4/64) code can 
handle the overlay case with a trip difference of 4, which 
might be of interest for shorter-wavelength radars, such 
as the TDWRs. 

 
4. CONCLUSIONS 

This paper introduced a family of systematic phase 
codes of the form SZ(n/64). A closer look into the 
performance of these generalized codes revealed a 
number of omissions in the early research work. 
Further, no single code is optimum for all overlay cases, 
and, surprisingly, the best overall phase code in the SZ 
family is not the SZ(8/64), which is currently used 
operational on the NEXRAD network.  

This analysis is by no means comprehensive. 
However, these preliminary results justify further 
exploration of generalized phase codes. For example, 
performance should be assessed using the actual levels 
and types of phase errors encountered operationally on 
the NEXRAD network, which have not been measured 
systematically. Also, we plan to complement a 
simulation-based study with the analysis of multiple real-
data cases collected with the KOUN research radar. 

In summary, this work is not complete yet but has 
the potential to lead to an even greater improvement 
with respect to previous “legacy” algorithms to 
effectively mitigate range and velocity ambiguities on 
the US network of weather surveillance radars. 
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